Math 10A with Professor Stankova
Worksheet, Discussion \#9; Friday, 9/15/2017
GSI name: Roy Zhao

Example

1. Find $\lim _{x \rightarrow 0^{-}} x^{-1} e^{x^{-2}}$.

Solution: As $x \rightarrow 0^{+}$, we know that $x^{-1} \rightarrow-\infty$ and $x^{-2} \rightarrow \infty$ so $x^{-1} e^{x^{-2}} \rightarrow$ $-\infty \cdot e^{\infty}=-\infty$.

Problems

2. Find $\lim _{x \rightarrow 2 \pi^{-}} x \csc (x)$.

Solution: As $x \rightarrow 2 \pi^{-}$, we know that $\sin (x) \rightarrow 0^{-}$and hence $x \csc (x)=\frac{x}{\sin (x)} \rightarrow$ $-\infty$.
3. Find $\lim _{x \rightarrow 2 \pi^{+}} x \csc (x)$.

Solution: As $x \rightarrow 2 \pi^{+}$, we know that $\sin (x) \rightarrow 0^{+}$and hence $x \csc (x)=\frac{x}{\sin (x)} \rightarrow \infty$.
4. Find $\lim _{x \rightarrow 2^{-}} \frac{x^{2}-2 x-8}{-\left(x^{2}-5 x+6\right)}$.

Solution: Factoring, we have that $\frac{x^{2}-2 x-8}{-\left(x^{2}-5 x+6\right)}=\frac{(x-4)(x+2)}{-(x-2)(x-3)}$. As $x \rightarrow 2^{-}$, we get $\frac{-8}{0}$ and so we need to care about the sign. Since $x<2$, the signs are $\frac{-+}{-.-.}=+$ so the limit is $+\infty$.
5. Find $\lim _{x \rightarrow 2^{+}} \frac{x^{2}-2 x-8}{-\left(x^{2}-5 x+6\right)}$.

Solution: Factoring, we have that $\frac{x^{2}-2 x-8}{-\left(x^{2}-5 x+6\right)}=\frac{(x-4)(x+2)}{-(x-2)(x-3)}$. As $x \rightarrow 2^{+}$, we get $\frac{-8}{0}$ and so we need to care about the sign. Since $x>2$, the signs are $\frac{-\cdot+}{-\cdot+\cdot-}=-$ so the limit is $-\infty$.
6. Find $\lim _{x \rightarrow 3^{-}} \frac{\sqrt{x}}{(x-3)^{4}}$.

Solution: As $x \rightarrow 3^{-}$, we have that $(x-3)^{4} \rightarrow 0^{+}$and so the limit is ∞.
7. Find $\lim _{x \rightarrow 3^{+}} \frac{\sqrt{x}}{(x-3)^{4}}$.

Solution: As $x \rightarrow 3^{+}$, we have that $(x-3)^{4} \rightarrow 0^{+}$and so the limit is ∞.

Example

1. Find y^{\prime} if $x^{3}+y^{3}=4$.

Solution: Taking the derivative of both sides, we have that $3 x^{2}+3 y^{2} \cdot y^{\prime}=0$ and hence $y^{\prime}=\frac{-3 x^{2}}{3 y^{2}}=\frac{-x^{2}}{y^{2}}$.
2. Find y^{\prime} if $e^{x y}=e^{4 x}-e^{5 y}$.

Solution: We take the derivative to get that $4 e^{4 x}-5 e^{5 y} y^{\prime}=e^{x y}(x y)^{\prime}=e^{x y}\left(x y^{\prime}+\right.$ $y)$. Bringing all the y^{\prime} to one side, we have $4 e^{4 x}-y e^{x y}=5 e^{5 y} y^{\prime}+x e^{x y} y^{\prime}$ so $y^{\prime}=$ $\frac{4 e^{4 x}-y e^{x y}}{5 e^{5 y}+x e^{x y}}$.

Problems

3. Find y^{\prime} if $(x-y)^{2}=x+y-1$.

Solution: Taking the derivative gives $2(x-y) y^{\prime}=1+y^{\prime}$ so $y^{\prime}=\frac{1}{2 x-2 y-1}$.
4. Find y^{\prime} if $y=\sin (3 x+4 y)$.

Solution: Taking the derivative gives $y^{\prime}=\cos (3 x+4 y)(3 x+4 y)^{\prime}=\cos (3 x+4 y)(3+$ $\left.4 y^{\prime}\right)$. Thus, $y^{\prime}=\frac{3 \cos (3 x+4 y)}{1-4 \cos (3 x+4 y)}$.
5. Find y^{\prime} if $y=x^{2} y^{3}+x^{3} y^{2}$.

Solution: Taking the derivative gives $y^{\prime}=2 x y^{3}+3 x^{2} y^{2} y^{\prime}+3 x^{2} y^{2}+2 x^{3} y y^{\prime}$ and hence $y^{\prime}=\frac{2 x y^{2}+3 x^{2} y^{2}}{1-3 x^{2} y^{2}-2 x^{3} y}$.
6. Find y^{\prime} if $\cos ^{2} x+\cos ^{2} y=\cos (2 x+2 y)$.

Solution: Taking the derivative gives $-2 \cos x \sin x-2 y^{\prime} \cos y \sin y=-2 \sin (2 x+$ $2 y)-2 y^{\prime} \sin (2 x+2 y)$ and so

$$
y^{\prime}=\frac{\cos x \sin x-\sin (2 x+2 y)}{\sin (2 x+2 y)-\cos y \sin y} .
$$

7. Find y^{\prime} if $x=3+\sqrt{x^{2}+y^{2}}$.

Solution: Taking the derivative gives $1=\frac{2 x+2 y y^{\prime}}{2 \sqrt{x^{2}+y^{2}}}$ so solving gives

$$
y^{\prime}=\frac{\sqrt{x^{2}+y^{2}}-x}{y} .
$$

8. Given $\frac{x-y^{3}}{y+x^{2}}=x+2$, find y^{\prime}.

Solution: Multiply through by $\left(y+x^{2}\right)$ first and take the derivative of both sides to get $1-3 y^{2} y^{\prime}=x y^{\prime}+y+2 y^{\prime}+3 x^{2}+4 x$ (you can do this without multiplying through but its a bit uglier). Then solving for y^{\prime} gives

$$
y^{\prime}=\frac{1-y-3 x^{2}-4 x}{3 y^{2}+x+2} .
$$

9. Find y^{\prime} give that $\frac{y}{x^{3}}+\frac{x}{y^{3}}=x^{2} y^{4}$.

Solution: Multiply through by $x^{3} y^{3}$ to clear denominators so $y^{4}+x^{4}=x^{5} y^{7}$. Taking the derivative gives $4 y^{3} y^{\prime}+4 x^{3}=7 x^{5} y^{6} y^{\prime}+5 x^{4} y^{7}$. Solving for y^{\prime} gives

$$
y^{\prime}=\frac{5 x^{4} y^{7}-4 x^{3}}{4 y^{3}-7 x^{5} y^{6}}
$$

10. Find y^{\prime} given $\left(x^{2}+y^{2}\right)^{3}=8 x^{2} y^{2}$.

Solution: Take the derivative and solve for y^{\prime} to get

$$
y^{\prime}=\frac{16 x y^{2}-6 x\left(x^{2}+y^{2}\right)^{2}}{6 y\left(x^{2}+y^{2}\right)^{2}-16 x^{2} y}
$$

